Climate Extrasensory Perception

A recent post Climate Hearsay featured an article by Ross McKitrick noting how climatists rely on charts and graphs to alarm people about temperature changes too small for them to notice otherwise.  For example, NOAA each month presents temperature measurements globally and broken down in various ways.  To illustrate McKitrick’s point, let’s look at the results for Quarter 1 of 2019, January through March.  Source: Global Climate Report

So the chart informs us that for this 3 month period, the whole world had its third warmest year out of the last 140 years!  2016 was a full 0.27℃ hotter on average over those 90 days.  Well, maybe not, because the error range is given as +/- 0.15℃.  So the difference this year from the record year 2016 might have been only a few 0.01℃, and no way you could have noticed that.  In fact where I live in Montreal, it didn’t seem like a warm year at all.

McKitrick also makes the point that claiming a country like Canada warmed more than twice the global average proves nothing.  In a cooling period, any place on land will cool faster than the global surface which is 71% ocean.  Same thing goes for warming: land temps change faster. For example, consider NOAA’s first quarter report on the major continents.

Surprise, surprise: North American temperatures ranked 38th out of 110 years, more than 2℃ cooler than 2016.  That’s more like what I experienced, though many days were much colder.  And browse the list of other land places: it was not that warm anywhere except for Oceania, with the land mass mostly in Australia.


Global warming/climate change is one of those everywhere, elsewhere phenomena.  Taking masses of temperatures and averaging them into a GMT (Global Mean Temperature Anomaly) is an abstraction, not anyone’s reality.  And in addition, minute changes in that abstraction are too small for anyone to sense.  Yet, modern civilization is presumed to be in crisis over 1.5℃ of additional warming, which we apparently already got in Canada and we are much better for it.

Some people worry Global Warming is changing how fast the Earth spins. Have you noticed?


Mike Hulme is a leading voice striking a rational balance between concern about the planet and careful deliberation over policy choices.  I have posted several of his articles, for example on extreme weather attribution and on attempts to link armed conflicts with climate change.  Pertinent to this post, Hulme has spoken out on the obsession with global temperature anomalies: See Obsessing Over Global Temperatures

Global temperature does not cause anything to happen. It has no material agency. It is an abstract proxy for the aggregated accumulation of heat in the surface boundary layer of the planet. It is far removed from revealing the physical realities of meteorological hazards occurring in particular places. And forecasts of global temperature threshold exceedance are even further removed from actionable early warning information upon which disaster risk management systems can work.

Global temperature offers the ultimate view of the planet—and of meteorological hazard—from nowhere.

And he has warned about the emergency rhetoric now on full display in the streets of major cities.  See Against Emergency Countdown

But as we argued a few years ago, declaring a climate emergency invokes a state of exception that carries many inherent risks: the suspension of normal governance, the use of coercive rhetoric, calls for ‘desperate measures’, shallow thinking and deliberation, and even militarization. To declare an emergency becomes an act of high moral and political significance, as it replaces the framework of ordinary politics with one of extraordinary politics.

In contrast, a little less rhetorical heat will allow for more cool-headed policy development. What is needed is clear-headed pragmatism, but without the Sword of Damocles hanging over these heads. Climate Pragmatism calls for accelerating technology innovation, including nuclear energy, for tightening local air quality standards, for sector-, regional- and local-level interventions to alter development trajectories and for major investments in improving female literacy. Not desperate measures called forth by the unstable politics of a state of emergency, but right and sensible things to do. And it is never too late to do the right thing.



Climate Hearsay

In a legal proceeding, a witness can only testify to what he or she personally experienced. Anything reported to them by others is dismissed as “hearsay”, not evidence by direct observation, but rather an opinion offered by someone else.

In the current public commotion over global warming, almost all the discourse is composed of hearsay.  Ross McKitrick explains that the alleged changes in temperatures are so small that no one can possibly notice. Thus, their concern over global warming can only come from repeating hearsay in the form of charts and graphs published by people with an axe to grind. His article in the Financial Post is Hold the panic: Canada just warmed 1.7 degrees and … thrived. Excerpts below in italics with my bolds.

A recent report, commissioned by Environment and Climate Change Canada (also known as the federal Department of the Environment), sparked a feverish bout of media coverage. Much of it keyed off the headline statement that Canada warmed “twice as fast” as the entire planet since 1948. If that is self-evidently a bad thing, what to make of the finding that the Canada’s Atlantic region warmed twice as fast as the Prairies? Or that Canadian winters warmed twice as fast as summers?

Saying Canada warmed twice as fast as the whole planet doesn’t prove anything

I’ll bet you didn’t know that the Maritimes warmed twice as fast as the Prairies. But now that I’ve told you, you might tell yourself it makes sense based on what you’ve seen or heard — that’s called confirmation bias. In fact, I was lying. It’s the other way around. The Prairies warmed almost three times faster than the Maritimes.

Would you have known either way? One of the psychological effects of a report like this, and the attendant media hype, is that it puts ideas in peoples’ heads. Tell everyone over and over that the climate is changing, and soon they will see proof of change everywhere. Rain, snow, wind, floods or dry spells; it will all seem to eerily confirm the theory, even though we have always had these things.

Most of what people are noticing, of course, are just natural weather events. Underneath, there are slow trends, both natural and (likely) human-caused. But they are small and hard to separate out without careful statistical analysis. A few years ago, climatologist Lennart Bengtsson remarked:

The warming we have had over the last 100 years is so small that if we didn’t have meteorologists and climatologists to measure it we wouldn’t have noticed it at all.

And so we get reports with charts and graphs to tell us about the changes we didn’t notice. Remember last summer when the media hyped a report from the Intergovernmental Panel on Climate Change warning that warming 1.5 degrees Celsius (compared to preindustrial times) was a disaster threshold we must avoid crossing at all costs? Now we learn that Canada warmed 1.7 degrees Celsius since 1948. Far from leaving the country a smoking ruin, we got wealthier and healthier, our population soared, and life improved by almost any measure of welfare you can imagine. If only every so-called catastrophe was like this.

We deal with lots of changes over time. Go back to Bengtsson’s thought experiment. Today’s 80-year-olds entered their teens in 1950. Ask them what changes they experienced over their lives and they will have plenty to say. Then ask if, where they live, the fall warmed more than spring did. Without peeking at the answer, most will have no idea. Yet, according to the federal government’s latest report, depending on the province, one likely warmed twice as fast as the other. Which one?

If you can’t tell without looking it up, that’s the point.

Alarming news headlines are always part of the ritual (though you’d have thought journalists would be a bit jaded by now, after all the hyperventilating Only-Ten-Years-Left blockbuster claims over the past 30 years). Saying Canada warmed twice as fast as the whole planet doesn’t prove anything. Pretty much any large country warmed faster than the global average, because countries are on land. Oceans cover 70 per cent of the Earth, and the way the system works, during a warming trend the land warms faster than the oceans. So the scary headline only confirms that we are on land.

The best antidote, if you find yourself alarmed by the press coverage, is to turn to chapter four of the Department of the Environment’s report and start reading. The section on the observed changes in 1948 is factual, data-focused and decidedly non-alarmist. But there are some points I would quibble about: 2016 was a strong El Niño year, so the end point of the data is artificially high.

Some of the report’s bright-red heat maps would probably look different if they stopped in, say, 2014. And most of the report’s comparisons start in 1948 to maximize data availability, but this boosts the warming rate compared to starting in the 1930s, which was a hot decade. When the authors talk about attributing changes to greenhouse gases versus natural variability, they don’t explain the deep uncertainties in such calculations. And they make projections about the century ahead without discussing how well — or how poorly — their models can long-term forecast.

If you want to learn about changes to the Canadian climate, read the report. But if you need to look at the report to know what changes you lived through, that tells you how much — or rather, how little — they mattered to you at the time.

Ross McKitrick is a professor of economics at the University of Guelph and senior fellow at the Fraser Institute.

Postscript:  No one under 20 years old has experienced a trend of warming temperatures.  Yet they are in the streets instead of classrooms demanding action (anything) to stop something they have never known.  Think about it.

Warmists Epic History Fail

Geologist Gregory Whitestone provides a climate history lesson for warmists who skipped history classes protesting against global warming.  His article at Town Hall is Ocasio-Cortez’s Climatology Lacks Historical Context. Excerpts in italics with my bolds. H/T Climate Depot.

When Sam Cooke sang “Don’t know much about history” in 1960 he could not have had U.S. Rep. Alexandria Ocasio-Cortez in mind, but only because she lives a half century later.

Whatever Ocasio-Cortez got from history classes during her time at Boston University, it wasn’t an appreciation of historical context because it is sorely lacking in her assertions about climate and its effect on humankind. She and others promoting the Green New Deal have the facts exactly backwards when they claim that warming temperatures are an existential threat to humanity.

Ocasio-Cortez recently warned in a House Oversight Committee hearing that the United States would have “blood on our hands” if legislation to tackle climate change was not passed. In questioning former Secretary of Defense Chuck Hagel, she alleged that “denial or even delaying in that action could cost us American life.”

Is that the case? Has increasing temperature been associated with negative impacts on the human condition? Common sense would seem to dictate that higher temperatures would lead to more drought and then to famine and ultimately to loss of life.

However, the story is different upon checking several thousands of years of extensive documentation covering the most recent warming trends to see how humans fared with temperatures like those predicted to occur by 2050 or 2100.

As it turns out, there is a great correlation between the rise and fall of temperature and the rise and fall of civilization, and the human experience is not the apocalypse you are being told to expect. Very consistently, throughout the last 3,500 years, humanity has prospered and thrived during warming periods, while the intervening colder periods witnessed crop failure, famine and mass depopulation. In fact, before climate science became politicized in the late 20th century, the warm eras were known as “Climate Optima” because both people and the Earth’s ecosystems benefited.

The last three warming trends corresponded with large advances in culture, science and technology. The Minoan (Bronze Age), Roman (Iron Age) and Medieval (High Middle Ages) periods were all much warmer than our current temperature and all benefited greatly from the rising temperature. Likely the most significant factor that allowed advances in civilization was a plentiful supply of food. Crops flourished and allowed time for the citizens of each culture to think, to dream and to invent.

Lucas van Valckenborch painted a cold winter landscape set near Antwerp, Belgium, in 1575, when Europe was in the midst of the Little Ice Age. Städel/Wikimedia Commons

Contrary to what we are being told by modern prophets of climate doom, it was the intervening cold that was devastating and led to the fall of empires and the collapse of civilizations. With names like the Greek Dark Ages, the Dark Ages and the Little Ice Age, these cold periods’ accompanying crop failure, famine, and mass depopulation were horrific for people.

The most recent and best documented cold period was the Little Ice Age (1250 – 1850 AD) which brought severe hardship, primarily in the northern latitudes. The combination of bitterly cold winters and cool, wet summers led to poor harvests, hunger and widespread death. Half the population of Iceland perished, and as much as one-third of humankind was decimated.

The worst cold of the Little Ice Age occurred in the late 17th century during a time known as the Maunder Minimum, which is linked to inactivity of the Sun. Based on the Central England Temperature record (the longest thermometer-based record) the depths of the cold were reached in the year 1695. For the next 40 years temperatures rose quickly and at several times the rate of warming measured in the 20th century.

The warming that began in the late 17th century continued for the next 300-plus years, ushering in an era of advancement unseen during any other period in humanity’s existence. It is what author W. Cleon Skousen called the “5,000 Year Leap” — five millennia of advances in communication, transportation, energy and exploration, and a doubling of the average length of human life, all condensed into less than 200 years. A myriad of factors were responsible, but it is certainly not clear that this progress would have occurred had Earth still been mired in the frigid temperatures of the Little Ice Age.

Last year, while Scott Pruitt was still the administrator of the EPA, he posed the question of how anyone could know what the ideal temperature of the Earth should be. Well known climate scientist Dr. Michael Mann of Penn State responded to Pruitt’s question by stating that the ideal temperature would be that which pre-dated the burning of fossil fuels. That temperature would put us squarely in the middle of the Little Ice Age’s devastating cold and history tells us that it turned out quite poorly.

History tells us that warming is very, very good, while cold is very, very bad.

Perhaps both Ocasio-Cortez and Mann should be labeled as “history deniers” for ignoring the true relationship between temperature and the human condition.

Footnote:  The obsession with a slight rise in average temperatures in the last 100 years is all the more remarkable for taking that warming totally out of context.
Any warming is good, even this small amount seen in the context of a year in the life of a typical American.  Moreover, the details of the statistics reveal that the rise is the result of cold months being warmer, while hotter months have cooled very slightly.  False Alarm.

Postscript (old soviet joke):  During soviet Russia era a professor addressed his history class, “I have good news and bad news about your final exam.  The good news is that all the questions are the same as last year.  The bad news:  Some of the answers are different.”

To Save the Earth, Get Down in the Dirt

Family Farmed is proud of the blossoming Good Food movement in their hometown of Chicago

Activists are directing school children to the streets to protest for more action against CO2 and their fear of global warming/climate change. In their desire to feel good about saving the planet, they ignore what is being done, and they march rather than picking up shovels and hoes and literally caring for the earth under their feet.

Overlooked is our potential to enhance the performance of the biosphere in capturing CO2 and greening the land. The soil itself is second only to the oceans, and the plant biomass is an additional sink for CO2. Below is an overview of the win-win proposition for humans to sequester carbon in the soil and restore its health and productivity at the same time. H/T Mark Krebs for suggesting this topic and providing resources from his own research and teaching.

Global Sequestration Potential of Increased Organic Carbon in Cropland Soil by Robert J. Zomer, Deborah A. Bossio, Rolf Sommer & Louis V. Verchot 2017.  Excerpts in italics with my bolds and titles.


The role of soil organic carbon in global carbon cycles is receiving increasing attention both as a potentially large and uncertain source of CO2 emissions in response to predicted global temperature rises, and as a natural sink for carbon able to reduce atmospheric CO2. There is general agreement that the technical potential for sequestration of carbon in soil is significant, and some consensus on the magnitude of that potential. Croplands worldwide could sequester between 0.90 and 1.85 Pg C/yr, i.e. 26–53% of the target of the “4p1000 Initiative: Soils for Food Security and Climate”. The importance of intensively cultivated regions such as North America, Europe, India and intensively cultivated areas in Africa, such as Ethiopia, is highlighted. Soil carbon sequestration and the conservation of existing soil carbon stocks, given its multiple benefits including improved food production, is an important mitigation pathway to achieve the less than 2 °C global target of the Paris Climate Agreement.

Soil as Both Sink and Source

Soils, however, can act as both sources and sinks of carbon, depending upon management, biomass input levels, micro-climatic conditions, and bioclimatic change. Substantially more carbon is stored in the world’s soils than is present in the atmosphere. The global soil carbon (C) pool to one-meter depth, estimated at 2500 Pg C, of which about 1500 Pg C is soil organic carbon (SOC), is about 3.2 times the size of the atmospheric pool and 4 times that of the biotic pool. An extensive body of research has shown that land management practices can increase soil carbon stocks on agricultural lands with practices including addition of organic manures, cover cropping, mulching, conservation tillage, fertility management, agroforestry, and rotational grazing. There is general agreement that the technical potential for sequestration of carbon in soil is significant, and some consensus on the magnitude of that potential.

This diagram of the fast carbon cycle shows the movement of carbon between land, atmosphere, and oceans in billions of tons per year. Yellow numbers are natural fluxes, red are human contributions, white indicate stored carbon.

Croplands Are Key

On this basis, the 4p1000 initiative on Soil for Food Security and Climate, officially launched by the French Ministry of Agriculture at the United Nations Framework Convention for Climate Change: Conference of the Parties (UNFCCC COP 21) in Paris, aims to sequester approximately 3.5Gt C annually in soils. Croplands will be extremely important in this effort, as these lands are already being actively managed, and so amenable to implementation of improved practices. Furthermore, because almost all cropped soils have lost a large percentage of their pre-cultivation SOC, they potentially represent a large sink to re-absorb carbon through the introduction and adoption of improved or proper management aimed towards increased SOC.

Multiple Benefits of Soil Organic Carbon (SOC)

However, carbon is rarely stored in soils in its elemental form, but rather in the form of organic matter which contains significant amounts of other nutrients, above all nitrogen. Nutrients, biomass productivity, the type of vegetation and water availability, among other constraints therefore can be major limiting factors inhibiting increases in soil carbon sequestration. Further imperative to sequester carbon in soils arises from the multiple co-benefits that are obtained from sequestration of carbon in soils that have been depleted of their organic matter. Soil fertility, health, and functioning are immediate consequences of the amount of soil organic matter (and hence carbon) a soil contains; this is even more important for highly weathered soils, as is the case for the majority of soils in the humid lowland tropics. Increasing carbon in soils also means improving its physical properties and related ecosystems services, such as better water infiltration, water holding capacity, as well as potentially increasing agricultural productivity and ecological resilience.

Reversing Lost SOC

An implicit basic assumption is that in general, 50 to 70% of soil carbon stocks have been lost in cultivated soils, such that the SOC status of almost all cultivated soils can be increased. It is expected that these cropped soils will be able to sequester carbon for at least 20 years before reaching saturation points and new SOC equilibriums, while meta-analysis of field studies suggests that in some instances significant sequestration can continue for 30 or even up to 40 years before reaching new equilibriums.

Where Lies the Greatest Potential

The regions of North America, Eurasia (Russia) and Europe currently store the greatest amount of carbon on cropland, each with more than 21 Pg C, and all together accounting for over 50% of all SOC stocks on cropland globally. By contrast, Central America, North Africa, and the Australian/Pacific region have very low amounts of stored SOC, together comprising 6.48 Pg C or just over 4.6% of the global total. Western Asia, South Asia, Southeast East Asia and East Asia each have moderate amount ranging from 4.38 Pg C to 9.14 Pg C, but together accounting for just less than 2% of global total.

The Top 30 cm are Vital

On these croplands adoption of improved management practices offers the opportunity to sequester significant amounts of carbon in the near term, and potentially to make an important contribution to global mitigation efforts. The 4p1000 Initiative has identified an aspirational sequestration target of 3.5 Pg C/yr to provide substantive global mitigation. Our estimates suggest that from 26% up to 53% (0.90–1.85 Pg C) of this target could be reached in the top 30 cm of cropland soils alone, and continue over at least 20 years after adoption of SOC enhancing management, such as incorporation of organic manures, cover cropping, mulching, conservation tillage, some types for agroforestry practices, rotational grazing, or other practices known to increase soil carbon at the decadal scale.

Carbon Smart Agriculture

Given the large amount of cropland potentially available, sequestering carbon via increases in the soil component on agricultural land is an achievable and potentially effective route to quickly increasing CO2 sequestration in the near term. For comparison, above-ground losses due to tropical land use conversion are currently estimated at 0.6–1.2 Pg C yr-1. A strategy of enhancing agriculture with soil carbon enriching improved practices, e.g. via appropriate policy mechanisms, thus offers significant potential to mitigate land use related carbon emissions and provide an opportunity for agricultural production to positively contribute to global mitigation efforts. SOC may be either enhanced by, or enhance above- and below-ground biomass carbon on agricultural land, allowing for synergistic increases in on-farm carbon stocks. Agroforestry systems and planting trees, for example, may increase soil carbon sequestration.

Productivity and Resilience as well

The benefits of increasing soil organic matter in croplands goes far beyond climate change mitigation potential. Facilitation of increased SOC through improved farming and soil conservation practices, enhancing resilience through improved fertility status and water holding capacity, also provide important adaptation benefits. It is generally recognized that changes in the moisture regime (e.g. drought or heavy precipitation events) can significantly impact crop productivity. These climatic conditions are mitigated by SOC, which adds structure, improves water infiltration and holding capacity, increases cation exchange capacity, and impacts soil fertility, a major controlling factor of agricultural productivity and both regional and household food security. Soil conditions have dramatic effects on the abundance and efficiency of N-fixing bacteria, which are vitally important in cropping systems that lack fertilizer inputs. Thus increased SOC through improved management practices is likely to add substantial resilience to croplands and farming systems, particularly during drought years or increased seasonal variability, helping to avoid edaphic (soil related) droughts that result from land degradation.

Better than the Alternatives

For the most part, agricultural practices that increase soil organic matter are supportive of enhanced food production and other ecosystem services. This is in contrast to other proposed negative emission strategies, such as afforestation (plantations of fast growing trees) and BECCS (bioenergy and carbon capture and storage) that will entail destruction of huge amounts of natural ecosystems or productive agriculture land if implemented at scales large enough to impact CO2 in the atmosphere. Given that hundreds of millions of small farmers for their subsistence depend upon croplands around the world, mitigation benefits of enhanced SOC storage must be recognized as only one significant component of an array of multiple benefits to achieve.

It Won’t be Easy, But We Can Do This

Despite the large technical potential to sequester carbon in soils, there are often significant limitations to achieving that potential in any particular place and within specific farming systems, including lack of biomass and other inputs. In addition, there may be tradeoffs with productivity, food security or hydrologic balances, as well as concerns regarding other GHGs, such as N2O. As with any efforts to sustain notable changes in practice significant understanding of cultural, political and socioeconomic contexts are required.

Humans Should Maximize the Benefits of Global Warming and Rising CO2

Numerous studies are referenced at the NIPCC chapter on CO2, Plants and Soils. While our knowledge of the biosphere CO2 sink is incomplete, much is known to scientists and the information points not to alarm but to opportunity. The surplus CO2 from burning fossil fuels represents an occasion for us to assist nature to replenish soils depleted of the carbon content plants need to achieve their potential. Excerpts in italics with my bolds.

Assist Forests to benefit even more from rising CO2.

1.2.1 Forests pg. 45

Forests contain perennial trees that remove CO2 from the atmosphere during the process of photosynthesis and store its carbon within their woody tissues for decades to periods of sometimes more than a thousand years. It is important to understand how increases in the air’s CO2 content affect forest productivity and carbon sequestration, which has a great impact on the rate of rise of the air’s CO2 concentration. 

Where tropical forests have not been decimated by the targeted and direct destructive actions of human society, such as the felling and burning of trees, forest productivity has been growing ever greater with the passing of time, rising with the increasing CO2 content of the air. This has occurred despite all concomitant changes in atmospheric, soil, and water chemistry, including twentieth century global warming, which IPCC claims to have been unprecedented over the past one to two millennia.

The planet is greener with the rise in CO2.

Forest growth rates throughout the world have gradually accelerated over the years in concert with, and in response to, the historical increase in the air’s CO2 concentration. As the atmosphere’s CO2 concentration rises, forests likely will respond by exhibiting significant increases in biomass production, and thus likely will grow much more robustly and significantly expand their ranges, as is already being documented in many parts of the world.

As the air’s CO2 content rises, therefore, saplings growing beneath the canopies of larger trees will likely increase their rates of photosynthesis under both high and low light conditions characteristic of intermittent shading and illumination by sunflecks. Moreover, because elevated CO2 concentrations allow saplings to maintain higher rates of photosynthesis for longer periods of time when going from lighted to shaded conditions, such trees should be able to sequester greater quantities of carbon than they do now. So powerful is this phenomenon, in fact, the two researchers state current estimates of the enhancement of long-term carbon gains by forests under conditions of elevated atmospheric CO2 “could be underestimated by steady-state photosynthetic measures.”

In contrast to frequently stated assumptions, old growth forests can be significant carbon sinks, and their capacity to sequester carbon in the future will be enhanced as the air’s CO2 content 75

What has put the planet’s trees on this healthier trajectory of being able to sequester significant amounts of carbon in their old age, when past theory (based on past observations) decreed they should be in a state of no-net-growth or even negative growth? The answer is rather simple. For any tree of age 250 years or more, the greater portion of its life (at least two-thirds of it) was spent in an atmosphere of much reduced CO2 content.

Zhou et al. (2006), “conducted a study to measure the long-term (1979 to 2003) dynamics of soil organic carbon stock in old-growth forests (age > 400 years) at the Dinghushan Biosphere Reserve in Guangdong Province, China.” and “measurements on a total of 230 composite soil samples collected between 1979 and 2003 suggested that soil organic carbon stock in the top 20-cm soil layer increased significantly during that time (P < 0.0001), with an average rate of 0.61 Mg C ha-1 year-1.” 

Manage the land to enhance soil health and productivity

As the CO2 content of the air increases, nearly all plants, including those of various forest ecosystems, respond by increasing their photosynthetic rates and producing more biomass. These phenomena allow long-lived perennial species characteristic of forest ecosystems to sequester large amounts of carbon within their trunks and branches aboveground and their roots below ground for extended periods of time. These processes, in turn, significantly counterbalance CO2 emissions produced by mankind’s use of fossil fuels.

Elevated CO2 enhances photosynthetic rates and biomass production in forest trees, and both of these phenomena lead to greater amounts of carbon sequestration. Elevated CO2 also enhances carbon sequestration by reducing carbon losses arising from plant respiration and in some cases from decomposition. Thus, as the air’s CO2 content rises, the ability of forests to sequester carbon rises along with it, appropriately tempering the rate of rise of the air’s CO2 content.

It would appear the ongoing rise in the air’s CO2 content will not materially alter the rate of decomposition of the world’s soil organic matter. This means the rate at which carbon is sequestered in forest soils should continue to increase as the productivity of Earth’s plants is increased by the aerial fertilization effect of the rising atmospheric CO2 concentration. 

“The accumulation of refractory organic carbon in soils that developed after the deglaciation of the American Pacific Northwest is ongoing and may still be far from equilibrium with mineralization and erosion rates.” This further suggests, in their words, “the turnover time of this carbon pool is 10,000 to 100,000 years or more and not 1,000 to 10,000 years as is often used in soil carbon models.” Smittenberg et al.

These independent experimental observations suggest claims to the contrary have no backing in empirical science. Both the aerial fertilization effect of atmospheric CO2 enrichment and the soil fertilization effect of the increase in nitrogen mineralization induced by global warming increase carbon sequestration in forest ecosystems, providing a strong, double-barreled, negative-feedback brake on the impetus for warming created by the enhanced greenhouse effect of the ongoing rise in the air’s CO2 content. Pg 98

Warming has produced bumper crops most everywhere.


Most of Earth’s terrestrial plant life evolved around 500 to 400 million years ago, when the katmospheric CO2 concentration was possibly 10 to 20 times higher than it is today. As a consequence, the biochemical pathways and enzymes involved in carbon fixation should be better adapted to significantly higher-than-present atmospheric CO2 levels, which has in fact been demonstrated to be the case. As the atmosphere’s CO2 content has dropped from that early point in time, it has caused most of Earth’s vegetation to become less efficient at extracting carbon dioxide from the air. However, the recent ongoing rise in atmospheric CO2 concentration is gradually increasing photosynthetic rates and stimulating vegetative productivity and the terrestrial sequestration of carbon around the globe. 

In a five-year study of a grassland growing on a moderately fertile soil at Stanford University’s Jasper Ridge Biological Preserve in central California— which utilized 20 open-top chambers (ten each at 360 and 720 ppm CO2)—Hu et al. (2001) found a doubling of the air’s CO2 content increased both soil microbial biomass and plant nitrogen uptake. With less nitrogen left in the soil to be used by a larger number of microbes, microbial respiration per unit of soil microbe biomass significantly declined in the elevated CO2 environments; with this decrease in microbial decomposition, there was an increase in carbon accumulation in the

Jasper Ridge outdoor laboratory at Stanford.

Thus, as the atmosphere’s CO2 content rises, carbon sequestration in the soils of Mediterranean grasslands likely will increase for two reasons. First, it should rise as a consequence of the greater retention times conferred upon the carbon in older soil organic carbon pools, which represent the largest reservoir of terrestrial carbon on Earth. Second, even though soil microbes exhibit a preference for newer carbon under CO2-enriched conditions, it should rise because of the great increase in the amount of carbon going into newer soil carbon pools due to CO2-enhanced root exudation, root turnover, and other types of litter production. Pg.115

How much extra carbon can be sequestered in the planet’s grassland soils as a result of a doubling of the air’s CO2 content? A good first approximation at an answer is provided by Williams et al. (2000), who studied this phenomenon for eight years in a Kansas (USA) tallgrass prairie. . . Extrapolating this value to all of Earth’s temperate grasslands, which make up about 10% of the land area of the globe, Williams et al. calculate the CO2-induced increase in soil carbon sequestration could amount to an additional 1.3 Pg of carbon being sequestered in just the top 15 cm of the world’s grassland soils over the next century. Pg 114

Restore barren land to natural or managed productivity.

1.2.5 Soils Bacteria • Rising atmospheric CO2 concentrations likely will allow greater numbers of beneficial bacteria (those that help sequester carbon and nitrogen) to exist in soils and anaerobic water environments. This two-pronged phenomenon would be a great boon to terrestrial and aquatic ecosystems. Pg.132

Nearly all of Earth’s plant life responds favorably to increases in the air’s CO2 content by exhibiting enhanced rates of photosynthesis and biomass production. Consequently, these phenomena tend to increase soil carbon contents by increasing root exudation of organic compounds and the amount of plant litter returned to the soil. Thus, it can be expected that CO2-mediated increases in soil carbon content will affect soil bacterial communities.

The great deserts of Africa and Asia have a huge potential for sequestering carbon, because they are currently so barren their soil carbon contents have essentially nowhere to go but up. The problem with this scenario, however, is that their soils blow away with every wisp of wind that disturbs their surfaces. The ongoing rise in the air’s CO2 content could do much to reverse this trend. At higher atmospheric CO2 concentrations, nearly all plants are more efficient at utilizing water

The end result of all these phenomena working together is greater carbon storage, both above- and below-ground, in what was previously little more than a source of dust for the rest of the world. And therein lies one of the great unanticipated benefits of the CO2-induced greening of the globe’s deserts: less airborne dust to spread havoc across Earth.

“It’s possible to rehabilitate large-scale damaged ecosystems.” Environmental film maker John D. Liu documents large-scale ecosystem restoration projects in China, Africa, South America and the Middle East, highlighting the enormous benefits for people and planet of undertaking these efforts globally.

Educate and enable gardeners and farmers to apply practices that sequester CO2 and enhance soil health and productivity.

Various programs and initiatives are underway promoting land management practices that improve soil health by enhancing its storage of carbon. One example comes from Mark Krebs, master gardener, who conducts seminars encouraging people to apply these principles to plots of land on their property or publicly available for such care.  They educate the public on how soil is degraded and how it can be regenerated.

As well practical methods are recommended to restore the health and productiviy of the soil, as well as increase its carbon storage.  Various associations offer resources, for example:

The Living Soil


International CSA (Climate Smart Agriculture) initiative


Rather than protesting the use of fossil fuels essential to modern life and to social and economic development in our age, people who want to make a difference should get down in the dirt.  The soil is starved for carbon and it is more and more available in the air.  Nature is already accessing this renewed source of CO2,  We humans should claim this unique opportunity to help the land regenerate and recover its productivity.

See also CO2 Fluxes, Sources and Sinks

Carbon Sense and Nonsense


March Cools Seas More Than Land Warms


With apologies to Paul Revere, this post is on the lookout for cooler weather with an eye on both the Land and the Sea.  UAH has updated their tlt (temperatures in lower troposphere) dataset for March.   Previously I have done posts on their reading of ocean air temps as a prelude to updated records from HADSST3. This month also has a separate graph of land air temps because the comparisons and contrasts are interesting as we contemplate possible cooling in coming months and years.

Presently sea surface temperatures (SST) are the best available indicator of heat content gained or lost from earth’s climate system.  Enthalpy is the thermodynamic term for total heat content in a system, and humidity differences in air parcels affect enthalpy.  Measuring water temperature directly avoids distorted impressions from air measurements.  In addition, ocean covers 71% of the planet surface and thus dominates surface temperature estimates.  Eventually we will likely have reliable means of recording water temperatures at depth.

Recently, Dr. Ole Humlum reported from his research that air temperatures lag 2-3 months behind changes in SST.  He also observed that changes in CO2 atmospheric concentrations lag behind SST by 11-12 months.  This latter point is addressed in a previous post Who to Blame for Rising CO2?

The March update to HadSST3 will appear later this month, but in the meantime we can look at lower troposphere temperatures (TLT) from UAHv6 which are already posted for March. The temperature record is derived from microwave sounding units (MSU) on board satellites like the one pictured above. This month also involved a change in UAH processing of satellite drift corrections, including dropping one platform which can no longer be corrected. The graphs below are taken from the new and current dataset.

The UAH dataset includes temperature results for air above the oceans, and thus should be most comparable to the SSTs. There is the additional feature that ocean air temps avoid Urban Heat Islands (UHI).  The graph below shows monthly anomalies for ocean temps since January 2015.

Open image in new tab to enlarge.

The anomalies over the entire ocean dropped to the same value, 0.11C  in August.  Warming in previous months was erased, and September added very little warming back. In October and November NH and the Tropics rose, joined by SH.  In December 2018 all regions cooled resulting in a global drop of nearly 0.1C. The upward bump in January in SH was reversed in February.  Despite some February warming in both NH and the Tropics, the Global anomaly cooled. Now in March the cooling appears in all regions resulting in a global decline in SST anomaly of 01C since 01/2019. Except for the Tropics, the ocean SSTs match those of 2015.

Land Air Temperatures Tracking Downward in Seesaw Pattern

We sometimes overlook that in climate temperature records, while the oceans are measured directly with SSTs, land temps are measured only indirectly.  The land temperature records at surface stations record air temps at 2 meters above ground.  UAH gives tlt anomalies for air over land separately from ocean air temps.  The graph updated for March is below.

The greater volatility of the Land temperatures was evident earlier, but has calmed down recently. Also the  NH dominates, having twice as much land area as SH.  Note how global peaks mirror NH peaks.  In November air over NH land Global and surfaces bottomed.despite the Tropics.  By January  all regions had almost the same anomaly. Now in March an upward bump in NH has pulled the Global anomaly up, and both are comparable to early 2015.  SH and the Tropics air over land are currently matching other regions, in contrast to starting 2015 much cooler.

TLTs include mixing above the oceans and probably some influence from nearby more volatile land temps.  Clearly NH and Global land temps have been dropping in a seesaw pattern, now more than 1C lower than the peak in 2016.  TLT measures started the recent cooling later than SSTs from HadSST3, but are now showing the same pattern.  It seems obvious that despite the three El Ninos, their warming has not persisted, and without them it would probably have cooled since 1995.  Of course, the future has not yet been written.


About Canadian Warming: Just the Facts

Just in time for the Trudeau carbon tax taking effect, we have all the media trumpeting “Canada Warming Twice as Fast as Global Rate–Effectively Irreversible.”  That was written by some urban-dwelling climate illiterates who are woefully misinformed.  Let’s help them out with some facts surprising to people who don’t get out much.  Unfortunately ignored this week was an informative CBC publication that could have spared us “fake news” spewing across the land, from Bonavista to Vancouuver Island, as the song says.

Surprising Facts About Canada are presented in a CBC series 10 Strange Facts About Canada’s Climate  Excerpts below provide highlights in italics with my bolds.

Through blistering cold winters to hot muggy summers; torrential rain, blinding snowstorms, deadly tornados and scorching drought, Canadians experience some of the planet’s most diverse weather systems.  [ Uh oh, averaging all of that could be a problem]

Canada is as tall as it is wide, creating a wide range of climate conditions.

Canada has the largest latitude range of any country on the planet. Our southern border lies at the same latitude as northern California, while our northern edge reaches right to the top of the world. It’s rarely the same season in the same place at the same time. In early April, the Arctic may still be in the throes of a frigid winter, while the south can experience summer-like temperatures. No doubt, our weather forecasters are the busiest in the world!

Canada has an ‘iceberg alley’.

Pieces of glaciers from the coast of Greenland are picked up by the Labrador Current, a counter-clockwise vortex of waters in the North Atlantic Ocean. Those broken pieces become icebergs that float in the sea off northeast Newfoundland where Fogo Island lies. Navigating the area is risky for ships; in fact this is where the mighty Titanic sank in 1912. But it’s a boon to tourism. Iceberg seekers flock to the area to watch (safely) from the shore and boast about drinking 10,000-year-old fresh water taken from an iceberg floating in the ocean.

Niagra Falls (the Canadian side)

Canada is (really) cold.

It’s certainly not surprising to most Canadians that we are tied with Russia for the title of ‘coldest nation in the world.’ Over our vast country, we have an average daily temperature of -5.6C. This is deadly cold. More of us — about 108 — die from exposure to extreme cold than from any other natural event. And that’s not counting Canadian wildlife who are more susceptible to Canada’s icy climate than we are.

Calgary Golfer February 9, 2016.

Every winter, southern Alberta is the ‘Chinook’ capital.

For six months — from November to May — warm dry winds rush down the slope of the Rocky Mountains towards southern Alberta. Often moving at hurricane-force speeds of 120 km per hour, they can bring astonishing temperature changes and melt ice within a couple of hours. In 1962 Pincher Creek saw a record temperature rise of 41C, from -19 to 22 in just one hour. Chinook is also known as the ‘ice-eater’ among locals who appreciate the break from winter that the winds provide.

Newfoundland is the foggiest place in the world.

At the Grand Banks off Newfoundland, the cold water from the Labrador Current from the north meets the warmer Gulf Stream from the south. The result is a whopping 206 days of fog a year. In the summer, it’s foggy 84 per cent of the time! It’s also the richest fishery in the world, the fog is a serious hazard to ships in the region.

Aerial view of the Haughton-Mars Project Research Station (HMPRS) on Devon Island, Nunavut, Arctic Canada is shown in this undated handout image.

Canada’s North is actually a desert

Canada’s North is very cold and dry with very little precipitation, ranging from 10-20 cm a year. Temperatures average below freezing most of the year. Together, they limit the diversity of plants and animals found in the North. And it’s huge: this polar desert covers one seventh of Canada’s total land mass.

In 1816, Canada didn’t have a summer.

If winter in Canada weren’t bad enough, in 1816 the country’s eastern population were sledding in June and thawing water cisterns in July. Trees shed their leaves and there were reports of migratory birds dropping dead in the streets.

Over in Europe, the weird weather stoked anti-American sentiment. People opposed to emigration said that North America was inhospitable and getting colder every year.

Representation of Mount Tambora 1815 eruption in Indonesia.

Ironically, as eastern Canada stayed cool, the Arctic warmed, creating flotillas of icebergs off the coasts of Nova Scotia and Newfoundland. At the time, it was thought that the icebergs were the cause of the cooling, like a giant glass of iced lemonade. What was the real reason? In 1815, the Tambora volcano erupted in Indonesia, spewing tonnes of ash and dust into the air. Less sunlight reached the earth and this caused the planet’s surface to cool. The volcanic eruption changed the climate in different ways around the world, but Eastern Canadians were treated to the summer that just didn’t come.

The Prairies face brutal temperature extremes.

It’s no surprise that Regina, Saskatchewan — which lies smack in the middle of Canada’s prairies — lays claim to both the country’s lowest recorded temperature, -50C on January 1, 1885 and the highest, 43.3C on July 5, 1937. Without the moderating effects of a large body of water, Canada’s Prairies are vulnerable to some of the worst weather Canada has to offer.

Hopewell Rocks at the Bay of fundy. Photo: gregstokinger

The Bay of Fundy has the largest tides in the world.

Twice each day, 160 billion tonnes of seawater flow in and out of this small area in Nova Scotia — more than the combined flow of the world’s freshwater rivers. The tides reach a peak of 16 metres (as high as a five-storey building) and take about six hours to come in. The most extreme tides in the Bay occur twice each month when the earth, moon and sun are in alignment and together they create a larger-than-usual gravitational pull on the ocean, creating a “spring tide” (not to be confused with the season spring).

Lightning over Lake St. Clair Photo: seebest

Windsor is the thunderstorm capital of Canada.

Hot, humid air from the Gulf of Mexico funnels up through Windsor and the Western Basin of Lake Erie creating the perfect conditions for thunderstorms. About 251 lightning flashes per 100 square kilometres happen every year when small pieces of frozen raindrops collide within thunderclouds. The clouds fill with electrical charges that are eventually funnelled to the ground as lightning.


With all that going on, all the variety of temperature, precipitation, weather events and seasonalities, no one noticed it had warmed much, and would be grateful if it had.  With all the alarms sounding about the Arctic meltdown in the last decades, let’s consider the best long-service stations in the far north.

According to the “leaked report”, Canada’s annual average temperature over land has warmed 1.7 C when looking at the data since 1948. But that claim is misleading when recent data is considered.

Over the past 25 years, since scientists began to warn that the planet was warming in earnest, there has not been any warming when one looks at the untampered data provided by the Japan meteorology Agency (JMA) that were measured by 9 different stations across Canada. These 9 stations have the data dating back to around 1983 or 1986, so I used their datasats.

Looking at the JMA database and plotting the stations with longer term recording, we have the following chart:

Though temperatures over Canada no doubt have risen over the past century, there has not been any real warming in over 25 years. Rather, there’s been slight cooling, though not statistically significant. Clearly there hasn’t been any Canadian warming recently.

So it is misleading — to say the least — to give the impression that Canada warming has been accelerating. Thanks to Kirye for posting this at No Tricks Zone

See also Cold Summer in Nunavut

N. Atlantic Starts Cold in 2019

RAPID Array measuring North Atlantic SSTs.

Update April 10, 2019  March AMO Results now available and included in Decadal graph below.

For the last few years, observers have been speculating about when the North Atlantic will start the next phase shift from warm to cold. Given the way 2018 went, this may be the onset.  First some background.

Source: Energy and Education Canada

An example is this report in May 2015 The Atlantic is entering a cool phase that will change the world’s weather by Gerald McCarthy and Evan Haigh of the RAPID Atlantic monitoring project. Excerpts in italics with my bolds.

This is known as the Atlantic Multidecadal Oscillation (AMO), and the transition between its positive and negative phases can be very rapid. For example, Atlantic temperatures declined by 0.1ºC per decade from the 1940s to the 1970s. By comparison, global surface warming is estimated at 0.5ºC per century – a rate twice as slow.

In many parts of the world, the AMO has been linked with decade-long temperature and rainfall trends. Certainly – and perhaps obviously – the mean temperature of islands downwind of the Atlantic such as Britain and Ireland show almost exactly the same temperature fluctuations as the AMO.

Atlantic oscillations are associated with the frequency of hurricanes and droughts. When the AMO is in the warm phase, there are more hurricanes in the Atlantic and droughts in the US Midwest tend to be more frequent and prolonged. In the Pacific Northwest, a positive AMO leads to more rainfall.

A negative AMO (cooler ocean) is associated with reduced rainfall in the vulnerable Sahel region of Africa. The prolonged negative AMO was associated with the infamous Ethiopian famine in the mid-1980s. In the UK it tends to mean reduced summer rainfall – the mythical “barbeque summer”.Our results show that ocean circulation responds to the first mode of Atlantic atmospheric forcing, the North Atlantic Oscillation, through circulation changes between the subtropical and subpolar gyres – the intergyre region. This a major influence on the wind patterns and the heat transferred between the atmosphere and ocean.

The observations that we do have of the Atlantic overturning circulation over the past ten years show that it is declining. As a result, we expect the AMO is moving to a negative (colder surface waters) phase. This is consistent with observations of temperature in the North Atlantic.

Cold “blobs” in North Atlantic have been reported, but they are usually winter phenomena. For example in April 2016, the sst anomalies looked like this

But by September, the picture changed to this

And we know from Kaplan AMO dataset, that 2016 summer SSTs were right up there with 1998 and 2010 as the highest recorded.

As the graph above suggests, this body of water is also important for tropical cyclones, since warmer water provides more energy.  But those are annual averages, and I am interested in the summer pulses of warm water into the Arctic. As I have noted in my monthly HadSST3 reports, most summers since 2003 there have been warm pulses in the north atlantic.
amo december 2018
The AMO Index is from from Kaplan SST v2, the unaltered and not detrended dataset. By definition, the data are monthly average SSTs interpolated to a 5×5 grid over the North Atlantic basically 0 to 70N.  The graph shows the warmest month August beginning to rise after 1993 up to 1998, with a series of matching years since.  December 2016 set a record at 20.6C, but note the plunge down to 20.2C for  December 2018, matching 2011 as the coldest years  since 2000.  Because McCarthy refers to hints of cooling to come in the N. Atlantic, let’s take a closer look at some AMO years in the last 2 decades.

This graph shows monthly AMO temps for some important years. The Peak years were 1998, 2010 and 2016, with the latter emphasized as the most recent. The other years show lesser warming, with 2007 emphasized as the coolest in the last 20 years. Note the red 2018 line is at the bottom of all these tracks.  The short black line shows that 2019 began slightly cooler than January 2018  The February average AMO matched the low SST of the previous year, 0.14C lower than the peak year February 2017. March 2019 is also slightly lower than 2018  and 0.06C lower than peak year March 2016.

With all the talk of AMOC slowing down and a phase shift in the North Atlantic, it seems the annual average for 2018 confirms that cooling has set in.  Through December the momentum is certainly heading downward, despite the band of warming ocean  that gave rise to European heat waves last summer.

amo annual122018




On Thermodynamic Climate Modelling

Earth climate systems functions as a massive heat engine.

Some years ago I wrote a post called Climate Thinking Out of the Box (reprinted later on) which was prompted by a conclusion from Lucarini et al. 2014:

“In particular, it is not obvious, as of today, whether it is more efficient to approach the problem of constructing a theory of climate dynamics starting from the framework of hamiltonian mechanics and quasi-equilibrium statistical mechanics or taking the point of view of dissipative chaotic dynamical systems, and of non-equilibrium statistical mechanics, and even the authors of this review disagree. The former approach can rely on much more powerful mathematical tools, while the latter is more realistic and epistemologically more correct, because, obviously, the climate is, indeed, a non-equilibrium system.”

Now we have a publication discussing progress in applying the latter approach using thermodynamic concepts in the effort to model climate processes.. The article is A new diagnostic tool for water, energy and entropy budgets in climate models by Valerio Lembo, Frank Lunkeit, and Valerio Lucarini February 14, 2019.  Overview in italics with my bolds.

Abstract: This work presents a novel diagnostic tool for studying the thermodynamics of the climate systems with a wide range of applications,from sensitivity studies to model tuning. It includes a number of modules for assessing the internal energy budget, the hydrological cycle,the Lorenz Energy Cycle and the material entropy production, respectively.

The routine receives as inputs energy fluxes at surface and at the Top-of-Atmosphere (TOA), for the computation of energy budgets at Top-of-Atmosphere (TOA), at the surface, and in the atmosphere as a residual. Meridional enthalpy transports are also computed from the divergence of the zonal mean energy budget fluxes; location and intensity of peaks in the two hemispheres are then provided as outputs. Rainfall, snowfall and latent heat fluxes are received as inputs for computing the water mass and latent energy budgets. If a land-sea mask is provided, the required quantities are separately computed over continents and oceans. The diagnostic tool also computes the Lorenz Energy Cycle (LEC) and its storage/conversion terms as annual mean global and hemispheric values.

In order to achieve this, one needs to provide as input three-dimensional daily fields of horizontal wind velocity and temperature in the troposphere. Two methods have been implemented for the computation of the material entropy production, one relying on the convergence of radiative heat fluxes in the atmosphere (indirect method), one combining the irreversible processes occurring in the climate system, particularly heat fluxes in the boundary layer, the hydrological cycle and the kinetic energy dissipation as retrieved from the residuals of the LEC.

A version of the diagnostic tool is included in the Earth System Model eValuation Tool (ESMValTool) community diagnostics, in order to assess the performances of soon available CMIP6 model simulations. The aim of this software is to provide a comprehensive picture of the thermodynamics of the climate system as reproduced in the state-of-the-art coupled general circulation models. This can prove useful for better understanding anthropogenic and natural climate change, paleoclimatic climate variability, and climatic tipping points.

Energy: Rather than a proxy of a changing climate, surface temperatures and precipitation changes should be better viewed as a consequence of a non-equilibrium steady state system which is responding to a radiative energy imbalance through a complex interaction of feedbacks. A changing climate, under the effect of an external transient forcing, can only be properly addressed if the energy imbalance, and the way it is transported within the system and converted into different forms is taken into account. The models’ skill to represent the history of energy and heat exchanges in the climate system has been assessed by comparing numerical simulations against available observations, where available, including the fundamental problem of ocean heat uptake.

Heat Transport: In order to understand how the heat is transported by the geophysical fluids, one should clarify what sets them into motion. We focus here on the atmosphere. A comprehensive view of the energetics fuelling the general circulation is given by the Lorenz Energy Cycle (LEC) framework. This provides a picture of the various processes responsible for conversion of available potential energy (APE), i.e. the excess of potential energy with respect to a state of thermodynamic equilibrium, into kinetic energy and dissipative heating. Under stationary conditions, the dissipative heating exactly equals the mechanical work performed by the atmosphere. In other words, the LEC formulation allows to constrain the atmosphere to the first law of thermodynamics, and the system as a whole can be seen as a pure thermodynamic heat engine under dissipative non-equilibrium conditions.

Water: On one hand the energy budget is relevantly affected by semi-empirical formulations of the water vapor spectrum, on the other hand the energy budget influences the moisture budget by means of uncertainties in aerosol-cloud interactions and mechanisms of tropical deep convection. A global scale evaluation of the hydrological cycle, both from a moisture and energetic perspective, is thus considered an integral part of an overall diagnostics for the thermodynamics of climate system.

Entropy: From a macroscopic point of view, one usually refers to “material entropy production” as the entropy produced by the geophysical fluids in the climate system, which are not related to the properties of the radiative fields, but rather to the irreversible processes related to the motion of these fluids. Mainly, this has to do with phase changes and water vapor diffusion. Lucarini (2009) underlined the link between entropy production and efficiency of the climate engine, which were then used to understand climatic tipping points, and, in particular, the snowball/warm Earth critical transition, to define a wider class of climate response metrics, and to study planetary circulation regimes. A constraint has also been proposed to the entropy production of the atmospheric heat engine, given by the emerging importance of non-viscous processes in a warming climate.

The goal here is to look at models through the lens of their dynamics and thermodynamics, in the view of enunciated above ideas about complex non-equilibrium systems. The metrics that we here propose are based on the analysis of the energy and water budgets and transports, of the energy transformations, and of the entropy production.

Previous Post: Climate Thinking Out of the Box 


It seems that climate modelers are dealing with a quandary: How can we improve on the unsatisfactory results from climate modeling?

Shall we:
A.Continue tweaking models using classical maths though they depend on climate being in quasi-equilibrium; or,
B.Start over from scratch applying non-equilibrium maths to the turbulent climate, though this branch of math is immature with limited expertise.

In other words, we are confident in classical maths, but does climate have features that disqualify it from their application? We are confident that non-equilibrium maths were developed for systems such as the climate, but are these maths robust enough to deal with such a complex reality?

It appears that some modelers are coming to grips with the turbulent quality of climate due to convection dominating heat transfer in the lower troposphere. Heretofore, models put in a parameter for energy loss through convection, and proceeded to model the system as a purely radiative dissipative system. Recently, it seems that some modelers are striking out in a new, possibly more fruitful direction. Herbert et al 2013 is one example exploring the paradigm of non-equilibrium steady states (NESS). Such attempts are open to criticism from a classical position, but may lead to a breakthrough for climate modeling.

That is my layman’s POV. Here is the issue stated by practitioners, more elegantly with bigger words:

“In particular, it is not obvious, as of today, whether it is more efficient to approach the problem of constructing a theory of climate dynamics starting from the framework of hamiltonian mechanics and quasi-equilibrium statistical mechanics or taking the point of view of dissipative chaotic dynamical systems, and of non-equilibrium statistical mechanics, and even the authors of this review disagree. The former approach can rely on much more powerful mathematical tools, while the latter is more realistic and epistemologically more correct, because, obviously, the climate is, indeed, a non-equilibrium system.”

Lucarini et al 2014

Here’s how Herbert et al address the issue of a turbulent, non-equilibrium atmosphere. Their results show that convection rules in the lower troposphere and direct warming from CO2 is quite modest, much less than current models project.

“Like any fluid heated from below, the atmosphere is subject to vertical instability which triggers convection. Convection occurs on small time and space scales, which makes it a challenging feature to include in climate models. Usually sub-grid parameterizations are required. Here, we develop an alternative view based on a global thermodynamic variational principle. We compute convective flux profiles and temperature profiles at steady-state in an implicit way, by maximizing the associated entropy production rate. Two settings are examined, corresponding respectively to the idealized case of a gray atmosphere, and a realistic case based on a Net Exchange Formulation radiative scheme. In the second case, we are also able to discuss the effect of variations of the atmospheric composition, like a doubling of the carbon dioxide concentration.

The response of the surface temperature to the variation of the carbon dioxide concentration — usually called climate sensitivity — ranges from 0.24 K (for the sub-arctic winter profile) to 0.66 K (for the tropical profile), as shown in table 3. To compare these values with the literature, we need to be careful about the feedbacks included in the model we wish to compare to. Indeed, if the overall climate sensitivity is still a subject of debate, this is mainly due to poorly understood feedbacks, like the cloud feedback (Stephens 2005), which are not accounted for in the present study.”

Abstract from:
Vertical Temperature Profiles at Maximum Entropy Production with a Net Exchange Radiative Formulation
Herbert et al 2013

In this modeling paradigm, we have to move from a linear radiative Energy Budget to a dynamic steady state Entropy Budget. As Ozawa et al explains, this is a shift from current modeling practices, but is based on concepts going back to Carnot.

“Entropy of a system is defined as a summation of “heat supplied” divided by its “temperature” [Clausius, 1865].. Heat can be supplied by conduction, by convection, or by radiation. The entropy of the system will increase by equation (1) no matter which way we may choose. When we extract the heat from the system, the entropy of the system will decrease by the same amount. Thus the entropy of a diabatic system, which exchanges heat with its surrounding system, can either increase or decrease, depending on the direction of the heat exchange. This is not a violation of the second law of thermodynamics since the entropy increase in the surrounding system is larger.

Carnot regarded the Earth as a sort of heat engine, in which a fluid like the atmosphere acts as working substance transporting heat from hot to cold places, thereby producing the kinetic energy of the fluid itself. His general conclusion about heat engines is that there is a certain limit for the conversion rate of the heat energy into the kinetic energy and that this limit is inevitable for any natural systems including, among others, the Earth’s atmosphere.

Thus there is a flow of energy from the hot Sun to cold space through the Earth. In the Earth’s system the energy is transported from the warm equatorial region to the cool polar regions by the atmosphere and oceans. Then, according to Carnot, a part of the heat energy is converted into the potential energy which is the source of the kinetic energy of the atmosphere and oceans.

Thus it is likely that the global climate system is regulated at a state with a maximum rate of entropy production by the turbulent heat transport, regardless of the entropy production by the absorption of solar radiation This result is also consistent with a conjecture that entropy of a whole system connected through a nonlinear system will increase along a path of evolution, with a maximum rate of entropy production among a manifold of possible paths [Sawada, 1981]. We shall resolve this radiation problem in this paper by providing a complete view of dissipation processes in the climate system in the framework of an entropy budget for the globe.

The hypothesis of the maximum entropy production (MEP) thus far seems to have been dismissed by some as coincidence. The fact that the Earths climate system transports heat to the same extent as a system in a MEP state does not prove that the Earths climate system is necessarily seeking such a state. However, the coincidence argument has become harder to sustain now that Lorenz et al. [2001] have shown that the same condition can reproduce the observed distributions of temperatures and meridional heat fluxes in the atmospheres of Mars and Titan, two celestial bodies with atmospheric conditions and radiative settings very different from those of the Earth.”

Hisashi Ozawa et al 2003

Nudging a Climate Illiterate

Mark Hendrickson writes at The Epoch Times March 28, 2019 Open Letter to a Journalist About His Paper’s Position on Climate Change Mark patiently lays out information and context for someone to think more deeply about superficial opinions on global warming/climate change. Excerpts in italics with my bolds and added images.


Mark Trumbull, Staff Reporter
The Christian Science Monitor
Boston, MA 02115

Dear Mr. Trumbull,

Last month, in your introductory remarks to The Christian Science Monitor Daily online news stories, you addressed the issue of the Monitor’s coverage of climate change. Your challenge is how to report when you and your Monitor colleagues believe that “human emissions of CO2 are triggering dangerous climatic conditions” while some of your readers do not.

You wrote, “Part of good journalism is to seek out a range of viewpoints rather than just present a story through one lens. But a corollary journalistic responsibility is to weigh the credibility and relevance of viewpoints.” I agree wholeheartedly, and I hope you will follow through in fairly reporting opinions with which you may personally disagree.

Climate change science does not lend itself to facile conclusions. The science itself is complex, many relationships are imperfectly understood, and then there is the daunting challenge of predicting the future. As I have written elsewhere, in fields like economics and climate change, there is no such thing as expertise about the future. In the words of a report from the Inter-governmental Panel on Climate Change (IPCC)—which your paper accepts as arguably the most credible authority that espouses the catastrophist position—“The climate system is a coupled nonlinear chaotic system, and therefore the long-term prediction of future climate states is not possible.”

Your statement that there is a “strong consensus within the climate science profession that human emissions are now the leading factor affecting changes in Earth’s climate” is almost correct, but not quite. Some climate skeptics object to the use of the word “consensus.” They state (correctly, I believe) that “consensus” is more appropriate in politics, where majorities shape reality, than in science, where what a majority may believe to be true today may be disproven tomorrow. You, however, used the word “consensus” correctly, because your supporting hyperlink takes the reader to a story about the political consensus that has been forged at the U.N. through the reports of the IPCC.

It is important to understand that the IPCC is a political organization (after all, it is the Inter-governmental Panel), not a scientific body. I can cite a number of quotes from scientists who have done work for the IPCC, but disagreed with the published “consensus.” The political nature of the IPCC and its reports is underscored by Appendix A of the Principles Governing IPCC work. It authorizes the few dozen political appointees who actually write the Summary for Policymakers to alter what scientists have written in order to conform to what the Summary states.

Hundreds of peer-reviewed articles every year differ from the official pronouncements of the IPCC. There is not so much a “strong consensus within the climate science profession” in general that human activity is causing a dangerous climate as there is a “strong consensus” within the extensive but not all-encompassing government-employed climate science clique.

Journalists often ask those who dissent from the official position of the IPCC if they receive or have received remuneration from fossil fuel companies. The ugly insinuation, of course, is that a person receiving compensation from a conventional energy company is automatically suspected of being a paid propagandist. Is it not equally as plausible that a scientist funded by government grants might tailor his findings so as not to risk losing a valuable source of income? There should be symmetry here, treating people on both sides of the issue with equal respect, instead of proceeding from the unfounded assumption that those receiving money from nongovernmental sources are not trustworthy while those receiving government funds are.

Regarding your assertion that “human emissions are now the leading factor affecting changes in Earth’s climate.” That assertion would have more credibility if it were proven that carbon dioxide is, in fact, the principal driver of global temperatures. However, when one looks at the historical record, one encounters a couple of inconvenient facts: 1) over hundreds of millions of years, graphs plotting global temperatures and atmospheric CO2 show no fixed relation or meaningful correlation; 2) the Vostok ice core graph shows the two variables following similar paths over the past several hundred thousand years, but with changes in CO2 lagging behind changes in temperature by 800 to 1,000 years, and effect cannot precede cause in a temporal universe.

Space prevents me from discussing other unresolved issues—the numerous measuring limitations and errors; the logarithmic scale of how much heat CO2 can “trap”; the fact that CO2 concentrations before the modern increase were dangerously low (plant life would cease to exist if the concentration fell much below 150–170 ppm, whereas it will flourish optimally nearer 1,000 ppm); whether warmer temperatures, on the whole, are better or worse for humans than cold.

I would urge the Monitor’s reporters to not rely so heavily on the scientists employed by the IPCC. Very subtly, the dangerous perception has set in that these are “the best scientists in the world.” I am not saying that there aren’t many fine scientists employed by Uncle Sam and contracted for by the IPCC, but to assume that if the government employs them, that stamps them as the best is unfounded. Politicians have no special power to identify which scientists’ output comes closest to the truth, but they are shrewd enough to pick scientists whose work can be used in support of pre-determined political agendas.

I hope none of your reporters is allied with the Society of Environmental Journalists—a group dedicated to censoring dissent. It does appear that your principal environmental reporter has become over-reliant on the eminently quotable Dr. Katherine Hayhoe, director of the Climate Science Center at Texas Tech University, and a lead author for the IPCC.

Dr. Hayhoe is very, very skilled at verbal manipulation. Take, for example, this cleverly constructed straw man: “[Climate] science is so old and so basic that to deny that science, we would have to be denying basic thermodynamics … and basic fluid dynamics that explains how airplanes fly. And there’s not a lot of politicians and pundits claiming that airplanes don’t fly.”

Brilliant! Unfortunately, it is also disingenuous. Skeptics about the catastrophist scenario aren’t rejecting the basic laws of physics; they don’t deny that Earth’s climate is volatile; they don’t deny that CO2 is a greenhouse gas or that human consumption of fossil fuels is increasing its concentration in the atmosphere.

There remain important disagreements about the degree of climate change, the impact those changes will have, whether any benefits that can be gained by retooling our lives would exceed the costs of making those changes, and other issues with public policy implications that need to be studied and discussed. I hope that the Monitor will contribute to these needed discussions by reporting today’s minority positions as well as the most popular ones.

Mark Hendrickson is an adjunct professor of economics and sociology at Grove City College. He is the author of several books, including “The Big Picture: The Science, Politics, and Economics of Climate Change.”

See Also:  Climate Reductionism

Straight Talk on CO2

The video above gives you in 20 minutes the viewpoint of William Happer, a key scientific advisor to the Trump Administration.  H/T Elephant’s Child and Tallbloke.

LEARNING A BIT ABOUT CO² AND MASS HYSTERIA by The Elephant’s Child March 25, 2019,

William Happer is one of our most renowned and esteemed physicists, a professor emeritus from Princeton University. He decidedly does not agree with the current panic about the horrors of “climate change.”He says, and explains why CO², carbon dioxide, doesn’t have much of anything to do with warming, and we really need more of it — not less. CO² is food for plants. The slight increase we have had is greening the earth. You can see it from space.

This conversation with Dr. Happer is completely fascinating and worth your time. Share it with your kids and friends and family.

You have surely heard the current crop of Democrat candidates hoping to run for the presidency against Donald Trump, speaking out on the notion that they will work to save us from the horrors of climate change and only disagreeing on how long we have left before it is all over. Green New Deal, they all signed right on.

Yes, I know that Nancy Pelosi wants sixteen year-olds to vote, but one would expect better from grownups who think they should be president. Yes, in the heat of a campaign and trying to raise money, they should have some responsibility for saying stupid things.

For those who are sure that 400 ppm represents the upper limits of what we can tolerate in the atmosphere, greenhouses pump in extra CO² to reach about 1,000 ppm to help their seedlings grow. The floors of greenhouses are not littered with the corpses of nurserymen.

We are in a CO² famine. We don’t have enough.